

Course Title: Programming Languages

Course Code: 503PMIS-3

Program: Professional Master of Data science

Department: Computer Science

College: Computer Science and information systems

Institution: Najran University

2

Table of Contents
A. Course Identification .. 3

6. Mode of Instruction (mark all that apply) ... 3

B. Course Objectives and Learning Outcomes ... 3

1. Course Description ... 3

2. Course Main Objective.. 3

3. Course Learning Outcomes ... 4

C. Course Content ... 4

D. Teaching and Assessment .. 6

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment

Methods ... 6

2. Assessment Tasks for Students ... 6

E. Student Academic Counseling and Support .. 7

F. Learning Resources and Facilities... 7

1.Learning Resources .. 7

2. Facilities Required... 7

G. Course Quality Evaluation .. 8

H. Specification Approval Data ... 8

3

A. Course Identification

1. Credit hours:3

2. Course type

a. University College  Department  Others

b. Required  Elective

3. Level/year at which this course is offered: 2nd level/ 1st year

4. Pre-requisites for this course (if any):

5. Co-requisites for this course (if any): NA

6. Mode of Instruction (mark all that apply)

No Mode of Instruction Contact Hours Percentage

1 Traditional classroom 50 100%

2 Blended

3 E-learning

4 Distance learning

5 Other

7. Contact Hours (based on academic semester)

No Activity Contact Hours

1 Lecture 30

2 Laboratory/Studio 20

3 Tutorial

4 Others (specify)

 Total 50

B. Course Objectives and Learning Outcomes

1. Course Description:

This course describes history of programming languages, formal models for specifying
languages, design goals, run-time structures, and implementation techniques, along

with a survey of principal programming language paradigms.

2. Course Main Objective
After successful completion of this course students should be able to:

use advanced programming techniques to solve computing problems. These include but are

not limited to: polymorphism, inheritance, abstract classes, interfaces enumerated data types

exceptions file I/O recursion data structures such as multi-dimensional arrays, ArrayList,

HashTable, linked lists use appropriate object oriented design techniques. understand UML

diagrams and their relationship to the design process. use appropriate testing techniques to

4

thoroughly test an application during development. understand contiguous and linked

implementation of stacks and queues. read and understand software specifications to

implement code that conforms to the specifications and to course coding standards.

3. Course Learning Outcomes

CLOs
Aligned

PLOs

1 Knowledge and Understanding

1.1 Describe UML diagrams and their relationship to the design process. K1

1.2 understand contiguous and linked implementation of stacks and queues. K2

1.3

1...

2 Skills

2.1 Apply programming techniques to solve computing problems. These

include but are not limited to: polymorphism, inheritance, abstract

classes, interfaces enumerated data types exceptions file I/O recursion

data structures such as multi-dimensional arrays, ArrayList, HashTable,

linked lists

S2

2.2 Implement object-oriented design techniques. S1

2.3 use appropriate testing techniques to thoroughly test an application

during development.

S3

2.4 |Implement code that conforms to the specifications and to course

coding standards

S3

2.5

3 Competences:

3.1

3.2

3.3

3...

C. Course Content

No List of Topics
Contact

Hours

1

Specification of programming languages o Syntax o Semantics

Operational Semantics Denotational Semantics Axiomatic Semantics

 Attribute Grammars

3

2

Specification of programming languages o Syntax o Semantics

Operational Semantics Denotational Semantics Axiomatic Semantics

 Attribute Grammars

3

3

Specification of programming languages o Syntax o Semantics

Operational Semantics Denotational Semantics Axiomatic Semantics

 Attribute Grammars

3

4
Issues in language design o Names, scope, and binding o Types o Control

Flow o Control Abstractions

3

5

5
Issues in language design o Names, scope, and binding o Types o Control

Flow o Control Abstractions

3

6
Issues in language design o Names, scope, and binding o Types o Control

Flow o Control Abstractions

3

7
Issues in language design o Names, scope, and binding o Types o Control

Flow o Control Abstractions

3

8
Issues in language design o Names, scope, and binding o Types o Control

Flow o Control Abstractions

3

9

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

3

10

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

3

11

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

4

12

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

4

13

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

4

14

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

4

15

Programming language paradigms o Data abstraction and object-oriented

programming (examples: Java, Smalltalk, C++) o Non-imperative

paradigms Functional languages (examples: Scheme, ML, Haskell)

Logic programming (example: Prolog) o Dynamic and scripting languages

(examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent

programming (examples: Java, SR, OpenMP)

4

6

Total 50

D. Teaching and Assessment
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment

Methods

Code Course Learning Outcomes Teaching Strategies Assessment Methods

1.0 Knowledge and Understanding

1.1

understand UML diagrams and their

relationship to the design process.

TS-1: Relate Course

Learning Outcomes

(CLOs)

to the topics

TS-2: Giving Lectures

in PPT, recalling the

lecture through asking

Questions. Clarifying

doubts on Lecture.

TS-3: Conducting a

discussion of real life

problems, among

teacher, students

Quiz

Assignments

Midterm Examination

Final Examination

1.2
understand contiguous and linked

implementation of stacks and queues.

…

read and understand software

specifications to implement code that

conforms to the specifications and to

course coding standards

2.0 Skills

2.1

use advanced programming

techniques to solve computing

problems. These include but are not

limited to: polymorphism, inheritance,

abstract classes, interfaces enumerated

data types exceptions file I/O

recursion data structures such as multi-

dimensional arrays, ArrayList,

HashTable, linked lists

TS-1: Relate Course

Learning Outcomes

(CLOs) to the topics

TS-2: Giving Lectures

in PPT, recalling the

lecture through asking

Questions. Clarifying

doubts on Lecture.

TS-3: Conducting a

discussion of real life

problems, among

teacher, students

TS-4: Cooperative

learning among the

students. Encourage

students to browse

different journals,

seminars or websites at

their leisure time to

have a better

understanding about the

course

Quiz

Assignments

Midterm Examination

Final Examination,

2.2
use appropriate object oriented design

techniques.

Quiz, Assignments

Final Examination

2.3

use appropriate testing techniques to

thoroughly test an application during

development.

Quiz

Assignments

Final Examination

2.4 Lab Assignments,

Midterm Examination,

2.5

 Final Examination

3.0 Competences

3.1

3.2

…

2. Assessment Tasks for Students

Assessment task* Week Due
Percentage of Total

Assessment Score

1 Quiz1 3rd week 5%

2 Midterm 1 6th week 20%

7

Assessment task* Week Due
Percentage of Total

Assessment Score

3 Project 5th week 10%

4 Theory Assignments 2th , 5th , 8th ,

10th weeks
10%

5 Lab Assignments 7th week 10%

6 Quiz2 10th week 5%

8
Final Exam 12th or

13th week

40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student

consultations and academic advice :

• Weekly office hours + Appointments

• Weekly academic advising hours

• Extra weekly 2 office hours prior to exams.

• Tutorials are also provided to the students

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks
Starting Out with Java: From Control Structures through Objects,

4/E. Tony Gaddis, Addison-Wesley, 2010.

Essential References

Materials

Electronic Materials

Other Learning

Materials

2. Facilities Required

Item Resources

Accommodation
(Classrooms, laboratories, demonstration

rooms/labs, etc.)

Room B-58

Laboratory A-16L

Technology Resources
 (AV, data show, Smart Board, software,

etc.)
Data show, PCs.

Other Resources
(Specify, e.g. if specific laboratory

equipment is required, list requirements or

attach a list)

• Printer is important in the lab to print reports and

some snapshots.

• Projector and PC for the lab instructor is required

8

G. Course Quality Evaluation

Evaluation

Areas/Issues
Evaluators Evaluation Methods

Online course survey Students Indirect

Focus group discussion with

small groups of students.
Instructor Direct

Extent of achievement of

course learning outcomes
instructor Direct

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning

outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee Computer Science Departmental Council

Reference No. 14440203-0185-00002

Date 1st Sep, 2022

	A. Course Identification
	6. Mode of Instruction (mark all that apply)

	B. Course Objectives and Learning Outcomes
	3. Course Learning Outcomes

	C. Course Content
	D. Teaching and Assessment
	1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods
	2. Assessment Tasks for Students

	E. Student Academic Counseling and Support
	F. Learning Resources and Facilities
	1.Learning Resources
	2. Facilities Required

	G. Course Quality Evaluation
	H. Specification Approval Data

