

Course Specifications

Course Title:	Programming Languages
Course Code:	503PMIS-3
Program:	Professional Master of Data science
Department:	Computer Science
College:	Computer Science and information systems
Institution:	Najran University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours:3		
2. Course type		
a. University College $$ Department $$ Others		
b. Required $$ Elective		
3. Level/year at which this course is offered: 2 nd level/ 1 st year		
4. Pre-requisites for this course (if any):		
5. Co-requisites for this course (if any): NA		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	50	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	20
3	Tutorial	
4	Others (specify)	
	Total	50

B. Course Objectives and Learning Outcomes

1. Course Description:

This course describes history of programming languages, formal models for specifying languages, design goals, run-time structures, and implementation techniques, along with a survey of principal programming language paradigms.

2. Course Main Objective

After successful completion of this course students should be able to:

use advanced programming techniques to solve computing problems. These include but are not limited to: polymorphism, inheritance, abstract classes, interfaces enumerated data types exceptions file I/O recursion data structures such as multi-dimensional arrays, ArrayList, HashTable, linked lists use appropriate object oriented design techniques. understand UML diagrams and their relationship to the design process. use appropriate testing techniques to thoroughly test an application during development. understand contiguous and linked implementation of stacks and queues. read and understand software specifications to implement code that conforms to the specifications and to course coding standards.

3. Co	urse Learning Outcomes	
	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Describe UML diagrams and their relationship to the design process.	K1
1.2	understand contiguous and linked implementation of stacks and queues.	K2
1.3		
1		
2	Skills	
2.1	Apply programming techniques to solve computing problems. These	S2
	include but are not limited to: polymorphism, inheritance, abstract	
	classes, interfaces enumerated data types exceptions file I/O recursion	
	data structures such as multi-dimensional arrays, ArrayList, HashTable,	
	linked lists	
2.2	Implement object-oriented design techniques.	S1
2.3	use appropriate testing techniques to thoroughly test an application during development.	\$3
2.4	Implement code that conforms to the specifications and to course	S 3
	coding standards	
2.5		
3	Competences:	
3.1		
3.2		
3.3		
3		

C. Course Content

No	List of Topics	
1	Specification of programming languages o Syntax o Semantics \Box Operational Semantics \Box Denotational Semantics \Box Axiomatic Semantics	3
1	\Box Attribute Grammars	
	Specification of programming languages o Syntax o Semantics \Box	3
2	Operational Semantics Denotational Semantics Axiomatic Semantics	
	□ Attribute Grammars	
	Specification of programming languages o Syntax o Semantics	3
3	Operational Semantics Denotational Semantics Axiomatic Semantics	
	□ Attribute Grammars	
4	Issues in language design o Names, scope, and binding o Types o Control	3
	Flow o Control Abstractions	

5	Issues in language design o Names, scope, and binding o Types o Control Flow o Control Abstractions	3
6	Issues in language design o Names, scope, and binding o Types o Control Flow o Control Abstractions	3
7	Issues in language design o Names, scope, and binding o Types o Control Flow o Control Abstractions	3
8	Issues in language design o Names, scope, and binding o Types o Control Flow o Control Abstractions	3
9	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	3
10	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	3
11	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	4
12	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	4
13	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	4
14	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	4
15	Programming language paradigms o Data abstraction and object-oriented programming (examples: Java, Smalltalk, C++) o Non-imperative paradigms □ Functional languages (examples: Scheme, ML, Haskell) □ Logic programming (example: Prolog) o Dynamic and scripting languages (examples: lua, csh, Python, Ruby, Perl, tcl, etc.) o Concurrent programming (examples: Java, SR, OpenMP)	4

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	understand UML diagrams and their relationship to the design process.	TS-1: Relate Course Learning Outcomes (CLOs) to the topics	Quiz Assignments Midterm Examination Final Examination
1.2	understand contiguous and linked implementation of stacks and queues.	TS-2: Giving Lectures in PPT, recalling the	
	read and understand software specifications to implement code that conforms to the specifications and to course coding standards	lecture through asking Questions. Clarifying doubts on Lecture. TS-3: Conducting a discussion of real life problems, among teacher, students	
2.0	Skills		
2.1	use advanced programming techniques to solve computing problems. These include but are not limited to: polymorphism, inheritance, abstract classes, interfaces enumerated data types exceptions file I/O recursion data structures such as multi- dimensional arrays, ArrayList, HashTable, linked lists	TS-1: Relate Course Learning Outcomes (CLOs) to the topics TS-2: Giving Lectures in PPT, recalling the lecture through asking Questions. Clarifying doubts on Lecture. TS-3: Conducting a discussion of real life	Quiz Assignments Midterm Examination Final Examination,
2.2	use appropriate object oriented design techniques.	problems, among teacher, students	Quiz, Assignments Final Examination
2.3	use appropriate testing techniques to thoroughly test an application during development.	TS-4: Cooperative learning among the students. Encourage students to browse	Quiz Assignments Final Examination
2.4		different journals, seminars or websites at	Lab Assignments, Midterm Examination,
2.5		their leisure time to have a better understanding about the course	Final Examination
3.0	Competences	I	
3.1	l		
3.2	l		
•••			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quiz1	3 rd week	5%
2	Midterm 1	6 th week	20%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
3	Project	5 th week	10%
4	Theory Assignments	2^{th} , 5^{th} , 8^{th} , 10^{th} weeks	10%
5	Lab Assignments	7 th week	10%
6	Quiz2	10 th week	5%
Q	Final Exam	12 th or	40%
0		13th week	

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Weekly office hours + Appointments
- Weekly academic advising hours
- Extra weekly 2 office hours prior to exams.
- Tutorials are also provided to the students

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Starting Out with Java: From Control Structures through Objects, 4/E. Tony Gaddis, Addison-Wesley, 2010.
Essential References Materials	
Electronic Materials	
Other Learning Materials	

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Room B-58 Laboratory A-16L	
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show, PCs.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	 Printer is important in the lab to print reports and some snapshots. Projector and PC for the lab instructor is required 	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Online course survey	Students	Indirect
Focus group discussion with small groups of students.	Instructor	Direct
Extent of achievement of course learning outcomes	instructor	Direct

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Computer Science Departmental Council
Reference No.	14440203-0185-00002
Date	1st Sep, 2022