

Course Specifications

Course Title:	Deep Learning
Course Code:	506PMAI-3
Program:	Professional Master of Artificial Intelligence
Department:	Computer Science
College:	Computer Science and information systems
Institution:	Najran University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours:3			
2. Course type			
a. University College Department $$ Others			
b. Required $$ Elective			
3. Level/year at which this course is offered: 4 th level/ 2 nd year			
4. Pre-requisites for this course (if any) : None			
5. Co-requisites for this course (if any): NA			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	50	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	50

B. Course Objectives and Learning Outcomes

1. Course Description:

This course covers the theory and practice of deep learning from a variety of perspectives. It explores topics such perceptron, convolutional neural network, autoencoder, recurrent neural network (LSTM, GRU). This course will teach the students how the forward propagation and backward propagation is done, and how to train a neural network from scratch or by using transfer learning approach. The student will also learn about generative adversarial networks sand style transfer networks. In the practical part, students will Python programming language with Keras and Tensorflow library to implement the aspects of the course to train neural network.

2. Course Main Objective

The main objective of this course is to provide an in-depth understanding of the principles, techniques, algorithms, and applications of deep learning. Moreover, the student will learn how to train a neural network from scratch.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	describe the key concepts of deep learning and its role in solving real	K1
	problems;	
1.2	explain different deep learning algorithms and their practical	K1, K2
	implementations and applications	
1.3		
1		
2	Skills	
2.1	Train deep learning models to solve a wide range of problems in many	S1, S4
	applications such as computer vision and natural language processing.	
2.2	Evaluate the applicability of different deep learning architectures	S2
2.3	.3 Build appropriate deep learning architecture to solve real problems	
2.4		
2.5		
3	Competences:	
3.1	Communicate clearly and effectively using the technical language of	C2
	the field	
3.2		
3.3		
3		

C. Course Content

No	List of Topics	Contact Hours
1	Introduction	3
2	Neural Network basics	3
3	Shallow Neural Network	3
4	Deep Neural Network	3
5	Training Neural Network	3
6	Optimization Algorithms	3
7	Convolutional Neural Network I	3
8	Convolutional Neural Network II	3
9	Recurrent Neural Network I	3
10	Recurrent Neural Network II	3
11	Autoencoders	3
12	Generative adversarial Network I	8
13	Generative adversarial Network II	3
14	Style Transfer Learning I	3
15	Style Transfer Learning II	3
	Total	50

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	describe the key concepts of deep learning and its role in solving real problems;	Giving Lectures in PPT, recalling the lecture through asking Ouestions, Clarifying	Quiz Theory Assignments
1.2	explain different deep learning algorithms and their practical implementations and applications	 doubts on Lecture. Discussions of real life problems, among taacher students 	Midterm Examination Final Examination
2.0		leacher, students	
2.0	Train deep learning models to solve a wide range of problems in many applications such as computer vision and natural language processing.	• Giving Lectures in PPT, recalling the lecture through asking Questions. Clarifying doubts on Lecture.	Quiz Lab Assignments Midterm Examination Final Examination,
2.2	Evaluate the applicability of different deep learning architectures	• Conducting a discussion of real life problems, among	Quiz, Theory Assignments Final Examination
2.3	Build appropriate deep learning architecture to solve real problems.	 teacher, students Cooperative learning among the students. Encourage students to 	Midterm Examination Min-project Final Examination
2.4	· · · · · · · · · · · · · · · · · · ·	iournals seminars or	
2.5		websites at their leisure time to have a better understanding about the course	
3.0	Competences	-	
3.1	Communicate clearly and effectively using the technical language of the field		Mini-Project presentation
3.2			
•••		1	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quiz1	3 rd week	5%
2	Midterm	6 th week	20%
3	Mini-Project	9 th week	15%
4	Lab Assignments	2 nd ,4 th ,7 th , 10 th week	15%
5	Quiz2	10 th week	5%
7	Final Exam	12 th or 13 th week	40%
8			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Weekly office hours
- Pre-booked Appointments
- Additional office hours prior exams
- Weekly academic advising hours

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	• Deep Learning (Adaptive Computation and Machine Learning series) Illustrated Edition by Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016
Essential References Materials	
Electronic Materials	
Other Learning Materials	

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Room B-59 Laboratory B-113L	
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show, PCs.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	 Printer is important in the lab to print reports and some snapshots. Projector and PC for the lab instructor is required GPUs cluster 	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Online course survey	Students	Indirect
course learning outcomes achievement survey	Students	Indirect
achievement of course	instructor	Direct

Evaluation Areas/Issues	Evaluators	Evaluation Methods
learning outcomes		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Computer Science Departmental Council
Reference No.	14440203-0185-00002
Date	1st Sep, 2022