

Course Specifications

Course Title:	Data Structures	
Course Code:	321CCS-3	
Program:	Computer science	
Department:	Department of Computer science	
College:	College of Computer Science and Information System	
Institution:	Najran University	

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes3	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content4	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. C	redit hours:		
2. C	ourse type		
a.	University College Department Others		
b.	Required Elective		
3. L	3. Level/year at which this course is offered: Year 3 / Level 7		
4. Pre-requisites for this course (if any): Fundamentals of Programing			
5. C	5. Co-requisites for this course (if any): NA		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	50	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	20
2	Laboratory/Studio	20
3	Tutorial	10
4	Others (specify)	
	Total	50

B. Course Objectives and Learning Outcomes

1. Course Description:

Study of common Abstract Data Types (ADTs), basic data structures and design and analysis of algorithms. Common ADTs: stack, queue, list, tree, priority queue, map and dictionary. Basic Data structures include arrays, linked lists, heaps, hash tables, search trees. Basic design and analysis of algorithms covers asymptotic notation, recursive algorithms, searching and sorting, tree traversal, graph algorithms.

2. Course Main Objective

Upon the successful completion of this course, students will be able to:

- Describe basic ADTs (stack, queue, array, list, node list, priority queue, tree, map and dictionary) and their related data structure implementations (array, single linked structure, double linked structure, heap, hash table, binary search tree, AVLtree).
- Distinguish between Abstract Data Types (ADTs), data structures and algorithms.

- Calculate the costs (space/time) of data structures and their related algorithms, both source code and pseudo-code, using the asymptotic notation (O()).
- Recognize basic concepts and techniques (recursive, sorting, searching, graph) used in design ofbasic algorithms.
- Implement basic algorithms and ADTs using different data structures strategies.
- Decide which type of data structures and algorithms best suits the problem they are solving.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Describe basic ADTs (stack, queue, array, list, node list, priority queue, tree, map and dictionary) and their related data structure implementations (array, single linked structure, double linked structure, heap, hash table, binary search tree, AVL tree)	K 1
1.2		
1.3	Recognize basic concepts and techniques (recursive, sorting, searching, graph) used in design of basic algorithms K ₁ , K ₃	
1		
2	Skills:	
2.1	Calculate the costs (space/time) of data structures and their related algorithms, both source code and pseudo-code, using the asymptotic notation (O()).	S_1
2.2	Decide which type of data structures and algorithms best suits the problem they are solving.	S_1, S_2, S_5
2.3	Implement basic algorithms and ADTs using different data structures strategies.	S ₂ , S ₅
2		
3	Values:	
3.1		
3.2		
3.3		
3		

C. Course Content

No	List of Topics	
1	Introduction to data structures and algorithms analysis	5
2	Algorithms Analysis (cont.)	10
3	3 Stacks and Queues	
4	Single and Node (double linked) Lists	
5	5 Trees	
6	6 Binary Search Trees, AVL Tree	
7	7 Priority Queues and Heaps	
8	Sorting	5
9	9 Maps and Hashes	
	Total	50

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

	sment Methods	Total C4 4	A 4 3 4 1 3	
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
1.1	Describe basic ADTs (stack, queue, array, list, node list, priority queue, tree, map and dictionary) and their related data structure implementations(array, single linked structure, double linked structure, heap, hash table, binary search tree, AVL tree)	TS-1: Relate Course Learning Outcomes (CLOs) to the topics TS-2: Lectures: using PPT presentation to address verbally in front of students the concepts associated with examples with taking help of writing on the board as needed. TS-3: Motivating students to work in home, to search from internet, to read related reference books by giving them assignments related to	Following methods are used to assess student's knowledge acquire in this course. Class Quizzes. Assignments. Midterm exams (Each exam consists of	
1.2	Distinguish between Abstract Data Types (ADTs), data structures and algorithms.	analysis of algorithm and data structures. TS-4: Let students to solve the problems related to complexity of different algorithms in small groups and giving correction on their multiple choic que ions, true/false, fi in the blanks, and theoretical questions.) - Final Exam		
1.3	Recognize basic concepts and techniques (recursive, sorting, searching, graph) used in design of basic algorithms	solution during class. TS-5: Motivating students to be active during class by asking questions regularly. TS-6: Giving students' tutorials related to importance of data		
2.0	Skills			
2.1	Calculate the costs (space/time) of data structures and their related algorithms, both source code and pseudo-code, using the asymptotic notation (O()).	TS-1:lectures TS-2:Giving students' tutorials related to importance of data	 Assignments. Midterm exams Final Exam. Lab assessment Final lab 	
2.2	Decide which type of data structures and algorithms best	•	-	

Code	Code Course Learning Outcomes		Teaching Strategies	Assessment Methods
	suits the problem they are solving.			
	Implement basic algorithms and			
2.3	ADTs using different data			
	structures strategies.			
3.0	Values			
3.1				
3.2				
• • •				

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	First Assignment or mini project (presentation)	3th	10%
2	Second Assignment	7th	5%
3	Quizzes	2th & 7th	5%
4	Lab Assessment & Performance	Every week	10%
5	Midterm Exam	5th	20%
7	Final Lab Exam	11th	10%
8	Final Exam	12 or 13th	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- During the whole semester, 10 hours/week are reserved for students to guide them, to help them and to explain them topic which is not clear to them during lecture.
- Academic advising: 4 weekly hours

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources		
Required Textbooks	Data Structures and Algorithms in Java, 6th Edition, by Michael Goodrich, RobertoTamassia, and Michael Goldwasser, 2014.	
Essential References Materials	 Mark Allen Weiss: Data Structures and Algorithm Analysis in Java, 3rd Edition, Pearson 2012. Robert Lafore, Data Structures & Algorithms in Java, Latest Edition. Note: Handouts will also be distributed in class.	
Electronic Materials	■ NA	
Other Learning Materials	■ NA	

2. Facilities Required

Item	Resources
------	-----------

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture Rooms with 20 seats with smart table, Mic, Speaker, PC, Auto Projector with Screen and a white board or a smart board.
Technology Resources (AV, data show, Smart Board, software, etc.)	Desktop/ Laptop computerProjector system
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	none

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Collecting students' questionnaire about the faculty and teaching methods.	Students	Survey
Collecting students' suggestions to facilitate more during the class.	Students	Verbal discussion
Student's questioner once during semester about course learning outcomes.	Students	Indirect Survey
Achievement percentage of course learning outcomes, direct evaluation using CLO assessment sheet	Course Instructor	Direct evaluation using CLO achievement calculation

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Computer Science Departmental Council
Reference No.	14440203-0185-00002
Date	1st Sep, 2022