

# **Course Specifications**

| Course Title:       | Object Oriented Programming              |  |
|---------------------|------------------------------------------|--|
| <b>Course Code:</b> | 2120CSS-4                                |  |
| Program:            | BSc in Computer Science                  |  |
| <b>Department:</b>  | Computer Science                         |  |
| College:            | Computer Science and Information Systems |  |
| Institution:        | Najran University                        |  |











## **Table of Contents**

| A. Course Identification3                                                              |   |
|----------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                           | 3 |
| B. Course Objectives and Learning Outcomes3                                            |   |
| 1. Course Description                                                                  | 3 |
| 2. Course Main Objective                                                               | 3 |
| 3. Course Learning Outcomes                                                            | 4 |
| C. Course Content4                                                                     |   |
| D. Teaching and Assessment4                                                            |   |
| Alignment of Course Learning Outcomes with Teaching Strategies and Assessment  Methods | 4 |
| 2. Assessment Tasks for Students                                                       | 5 |
| E. Student Academic Counseling and Support6                                            |   |
| F. Learning Resources and Facilities6                                                  |   |
| 1.Learning Resources                                                                   | 6 |
| 2. Facilities Required                                                                 | 6 |
| G. Course Quality Evaluation7                                                          |   |
| H. Specification Approval Data7                                                        |   |

#### A. Course Identification

| <b>1. Credit hours:</b> 4(3, 2, 1)                              |
|-----------------------------------------------------------------|
| 2. Course type                                                  |
| a. University College √ Department Others                       |
| <b>b.</b> Required $\sqrt{}$ Elective                           |
| 3. Level/year at which this course is offered: Year 2 / Level 5 |
| 4. Pre-requisites for this course (if any):                     |
| 111CSS-4                                                        |
| 5. Co-requisites for this course (if any):                      |
| None                                                            |

**6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 60                   | 100%       |
| 2  | Blended               |                      |            |
| 3  | E-learning            |                      |            |
| 4  | Distance learning     |                      |            |
| 5  | Other                 |                      |            |

**7. Contact Hours** (based on academic semester)

| No | Activity          | <b>Contact Hours</b> |
|----|-------------------|----------------------|
| 1  | Lecture           | 30                   |
| 2  | Laboratory/Studio | 20                   |
| 3  | Tutorial          | 10                   |
| 4  | Others (specify)  |                      |
|    | Total             | 60                   |

### **B.** Course Objectives and Learning Outcomes

### 1. Course Description

The course introduces the fundamental concepts of imperative programming languages. Topics include data types, control structures, functions, arrays, files, exception handling, and the mechanics of running, testing, and debugging of processing programs. This course also covers the basic concepts for software design and reuse. One C, C++, Python, or Java programming languages can be used a representative imperative language of this course.

| 2. Course Main Objective |  |  |
|--------------------------|--|--|
|                          |  |  |

**3. Course Learning Outcomes** 

|     | CLOs                                                                                                                            | Aligned<br>PLOs                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1   | Knowledge and Understanding                                                                                                     |                                 |
| 1.1 | Explain the essential principles and concepts of object-oriented programming and their appropriateness in solving computational | K <sub>1,</sub> K <sub>3</sub>  |
|     | problems.                                                                                                                       |                                 |
| 1.2 |                                                                                                                                 |                                 |
| 1.3 |                                                                                                                                 |                                 |
| 1   |                                                                                                                                 |                                 |
| 2   | Skills:                                                                                                                         |                                 |
| 2.1 | Apply object oriented programming styles which impact on developing and maintaining GUI applications.                           | S <sub>1</sub> , S <sub>5</sub> |
| 2.2 | Demonstrate the ability in explaining, testing, correcting and debugging processing object oriented programs                    | S <sub>2</sub> , S <sub>4</sub> |
| 2.3 | Design programs utilizing the principles of object oriented to solve simple computational problems                              | S <sub>2</sub> , S <sub>5</sub> |
| 2   | Implement object oriented principles to effectively and efficiently solve computational problems involving multiple objects     | <b>S</b> <sub>5</sub>           |
| 3   | Values:                                                                                                                         |                                 |
| 3.1 | Write object oriented programs with collaboration and team work in mind                                                         | C <sub>1</sub> , C <sub>2</sub> |
| 3.2 |                                                                                                                                 |                                 |
| 3.3 |                                                                                                                                 |                                 |
| 3   |                                                                                                                                 |                                 |

### C. Course Content

| No   | List of Topics                                                 | Contact<br>Hours |
|------|----------------------------------------------------------------|------------------|
| 1    | Revision to 113CSS-4                                           | 4                |
| 2    | Introduction to Object Oriented Programming                    | 4                |
| 3    | Objects and Classes                                            | 8                |
| 4    | Object Oriented Thinking – Class Abstraction and Encapsulation | 4                |
| 5    | Inheritance and Polymorphism                                   | 8                |
| 6    | Exception Handling and Text I/O                                | 4                |
| 7    | Abstract Classes and Interfaces                                | 8                |
| 8    | JavaFX Basics                                                  | 4                |
| 9    | Event Driven Programming and Animation                         | 4                |
| 10   | JavaFX UI Controls and Multimedia                              | 8                |
| 11   | Revision                                                       | 4                |
| Tota | al                                                             | 60               |

### **D.** Teaching and Assessment

# 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes    | Teaching Strategies | <b>Assessment Methods</b> |
|------|-----------------------------|---------------------|---------------------------|
| 1.0  | Knowledge and Understanding |                     |                           |

| Code  | Course Learning Outcomes                                                                                                                 | Teaching Strategies                                                                                                              | <b>Assessment Methods</b>                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.1   | Explain the essential principles and concepts of object-oriented programming and their appropriateness in solving computational problems | Cooperative Learning,<br>Inquiry-based<br>instruction, class-<br>discussion, problem-<br>based learning                          | Quiz-1, Midterm,<br>Assignement-1, Lab<br>Activities, Final<br>Theory Exam             |
| 1.2   |                                                                                                                                          |                                                                                                                                  |                                                                                        |
|       |                                                                                                                                          |                                                                                                                                  |                                                                                        |
| 2.0   | Skills                                                                                                                                   |                                                                                                                                  |                                                                                        |
| 2.1   | <b>CLO#4:</b> Apply object oriented programming styles which impact on developing and maintaining GUI applications.                      | Cooperative Learning,<br>Inquiry-based<br>instruction, class-<br>discussion, formative<br>assessment, problem-<br>based learning | Assignment-4,<br>Project-2, Lab<br>Activities, Final Lab<br>Exam, Final Theory<br>Exam |
| 2.2   | <b>CLO#5:</b> Demonstrate the ability in explaining, testing, correcting and debugging processing object oriented programs               | Cooperative Learning,<br>Inquiry-based<br>instruction, class-<br>discussion, formative<br>assessment                             | Assignment-5, Project-3, Lab Activities, Final Lab Exam, Final Theory Exam             |
| 2.3   | Design programs utilizing the principles of object oriented to solve simple computational problems                                       | Cooperative Learning,<br>Inquiry-based<br>instruction, class-<br>discussion, problem-<br>based learning                          | Assignment-2, Project-1, Lab Activities, Final Lab Exam, Final Theory Exam             |
| 2.4   | Implement object oriented principles to effectively and efficiently solve computational problems involving multiple objects              | Cooperative Learning,<br>Inquiry-based<br>instruction, class-<br>discussion, formative<br>assessment, problem-<br>based learning | Quiz-2, Assignement-3 Midterm, Lab Activities Exam, Final Lab Exam, Final Theory Exam  |
| 3.0   | Values                                                                                                                                   |                                                                                                                                  |                                                                                        |
| 3.1   | Write object oriented programs with collaboration and team work in mind                                                                  | Cooperative Learning,<br>Inquiry-based<br>instruction, Project-<br>based learning,<br>formative assessment                       | Assignement-6, Lab<br>Activities, Project-1,<br>Project-2, Project-3                   |
|       |                                                                                                                                          |                                                                                                                                  |                                                                                        |
| • • • |                                                                                                                                          |                                                                                                                                  |                                                                                        |

### 2. Assessment Tasks for Students

| # | Assessment task*                          | Week Due      | Percentage of Total<br>Assessment Score |
|---|-------------------------------------------|---------------|-----------------------------------------|
| 1 | Quiz-1                                    | 2             | 5%                                      |
| 2 | Quiz-2                                    | 7             | 5%                                      |
| 3 | Assignment or mini project (presentation) | Every<br>week | 10%                                     |
| 4 | Midterm                                   | 5             | 20%                                     |
| 6 | Lab Activities                            | Every<br>week | 10%                                     |

| # | Assessment task*  | Week Due | Percentage of Total<br>Assessment Score |
|---|-------------------|----------|-----------------------------------------|
| 7 | Final Lab Exam    | 11       | 10%                                     |
| 8 | Final Theory Exam | 12 or 13 | 40%                                     |
|   |                   |          |                                         |

<sup>\*</sup>Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

### E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Specifying office hours, forming discussion groups using social media (e.g. Facebook and Twitter) and messenger application (e.g. WhatsApp and Telegram)

### F. Learning Resources and Facilities

1.Learning Resources

| 1.Learning Kesources              |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required Textbooks                | Introduction to Java Programming Comprehensive Version Tenth Edition, by Y. Daniel Liang, ISBN-13: 978-0133761313 ISBN-10: 0133761312                                                                                                                                                                                                                                                                                     |
| Essential References<br>Materials | <ol> <li>Herbert Schildt The Complete Reference, JAVA 2, 9th Edition, 2014, McGraw Hill Publishing Company Ltd.</li> <li>Harvey M. Deitel and Paul J. Deitel, Java, How to Program: JavaTM, 9th Edition, 2011, Prentice Hall.</li> <li>Thomas Wu, An Introduction to Object-Oriented Programming with JAVA, 5th Edition, 2009, McGraw-Hill.</li> <li>Bruce Eckel, Thinking in Java, 2nd Edition, Prentice Hall</li> </ol> |
| Electronic Materials              |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other Learning<br>Materials       |                                                                                                                                                                                                                                                                                                                                                                                                                           |

2. Facilities Required

| Item                                                                                                             | Resources                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)                                         | Classrooms to accommodate 50 students per classroom with desks and chairs, labs to accommodate 25 students per lab with advanced computers. |
| <b>Technology Resources</b> (AV, data show, Smart Board, software, etc.)                                         | Data show, stationaries, smart board, suitable IDE (Netbeans and Eclipse)                                                                   |
| Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list) | ACs for labs and classrooms, black curtains                                                                                                 |

### **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues             | Evaluators                           | <b>Evaluation Methods</b>                                          |
|----------------------------------------|--------------------------------------|--------------------------------------------------------------------|
| Effectiveness of teaching              | Students, faculty and peer review    | Indirect (questionnaires and interviews)                           |
| Assessment                             | Faculty and student                  | Direct and indirect (exams, quizzes, lab works and questionnaires) |
| Achievement of course learning outcome | Faculty                              | Direct and indirect (exams, quizzes, lab works and questionnaires) |
| Skills of analysis and discussion      | Faculty                              | Project presentation                                               |
| Quality of learning resources          | Faculty, student, head of department | Written exam                                                       |
| Professional skills                    | Faculty                              | Practical exam                                                     |
| Ability to work in groups              | Faculty and students                 | Assignments                                                        |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

**Assessment Methods** (Direct, Indirect)

### **H. Specification Approval Data**

| Council / Committee | Computer Science Departmental Council |
|---------------------|---------------------------------------|
| Reference No.       | 14440203-0185-00002                   |
| Date                | 1st Sep, 2022                         |