

College of Computer Science and Information Systems Course Code : 361CSS-3 Contact Hour : 3(0) Department of Computer Science Artificial Intelligence Prerequisite : N/A

Coordinator -

2. Course Description

This course will provide an introduction on the basic concepts and techniques of Artificial Intelligence. It gives an overview of underlying ideas such as search, knowledge representation and reasoning, expert systems, learning, natural language processing, robotics and uncertainty. To gain the experience of doing independent study and research.

3. Course Learning Outcomes				
SL	By the end of this course, students should be able to:	Linkages to POs		
1.	Explain the difference in †intelligence' and Artificial Intelligence', and the land mark achievements in the development			
	of AI evolution.			
2.	Describe Artificial Intelligence techniques in solving problems (i.e. expert systems, natural language processing, robotics,			
	reasoning with uncertainty, game playing, prolog and computer vision)			
3.	Apply different search techniques (i.e. Depth First Search, Breath first search, Iterative deepening search, Uniform Cost search,			
	heuristic function, greedy search, A* search and iterative deepening A* search) to solve problems.			
4.	Use the knowledge representation techniques to represent the knowledge in different domain.			
5.	Implement the learning of this course in terms of a course project based on AI techniques.			

4. Learning Resources					
Text	Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, 2ndEdition, Prentice Hall: 2003, ISBN: 0-13-				
	790395-2.				
Reference	George F. Luger. Artificial Intelligence – Structures and Strategies for Complex problem solving, 6th Edition, Pearson International Edition, ,				
	2009.				
Reference	Ivan Bratko, Prolog Programming for Artificial Intelligence, 3rd Edition, Addison Wesley, 2000. ISBN-13: 978-				
	0201403756				
Reference	Wolfgang Erfel. Introduction to Artificial Intelligence, 2nd edition, Springer: New York, 2009. ISBN 978-0-85729-298-8				

5. Course Content : The list below provides a summary of the material that will be covered during the course					
Week	Topics	References Book /	Special Event	Tutorial Activities	Lab Activities
		Others Source			
1.	Introduction to Artificial Intelligence:	1, 2		N/A	N/A
	Definitions, Goals, Approaches, Applications and				
	-				
	History, Intelligent Agents; the Turing test, specify				
	PEAS.				

2.	Searching Algorithms in AI:	3, 4	Quiz-1	Tutorial -1	N/A
	Uninformed Search: breadth-first, depth-first,				
	depth-first iterative-deepening and bidirectional				
	search;				
	Heuristic Search: Greedy search, A*-search, and				
	hill climbing.				
3.	Searching Algorithms in AI:	3, 4	Assignment 1	Tutorial -2	N/A
	Uninformed Search: breadth-first, depth-first,				
	depth-first iterative-deepening and bidirectional				
	search;				
	Heuristic Search: Greedy search, A*-search, and				
	hill climbing.				
4.	Searching Algorithms in AI:	3, 4		Tutorial -3	N/A
	Uninformed Search: breadth-first, depth-first,				
	depth-first iterative-deepening and bidirectional				
	search;				
	Heuristic Search: Greedy search, A*-search, and				
	hill climbing.				
5.	Knowledge Representation:	5.6, 6.4, 9.3		Tutorial -4	N/A
	Predict and propositional logic, resolution and				
	deductive proof techniques (e.g. Generalized				
	modus ponens) Reasoning with uncertainty).				
	Rules, Frames, Semantic Network (Web),				
	Predicate Logic				
6.	Knowledge Representation:	5.6, 6.4, 9.3		Tutorial -5	N/A
	Predict and propositional logic, resolution and				
	deductive proof techniques (e.g. Generalized				
	modus ponens) Reasoning with uncertainty).				
	Rules, Frames, Semantic Network (Web),				
	Predicate Logic				
7.	Introduction to Prolog:	Prolog Programming	Midterm-1	N/A	N/A
	Presentation of prolog (the program and query)				
	and the facts (simple facts, facts with arguments				
	and how to query).				
8.	Decision and Reasoning with uncertainty:	14.1,14.2,			N/A
	Reasoning: Introduction to probability, Bayes	14.4, 15.3,16.7			
	Rule, Belief Networks and inference with them;				
	Decision making basic concepts of decision				
	theory, decision tree and decision network.				

9.	Decision and Reasoning with uncertainty:	14.1,14.2,		Tutorial -6	N/A
	Reasoning: Introduction to probability, Bayes	14.4, 15.3,16.7			
	Rule, Belief Networks and inference with them;				
	Decision making basic concepts of decision				
	theory, decision tree and decision network.				
10.	Machine Learning:	18.1, 18.2,	Assignment -2	Tutorial -7	N/A
	General concepts of learning with introduction to	18.3,18.5,			
	PAC theory, hypothesis space learning, and	18.6,19.3			
	perceptions.	22.1,22.2			
	Agent interaction:				
	Basic concepts of agent communication and				
	coordination, including adversarial search and				
	game theory.				
11.	Machine Learning:	18.1, 18.2,	Midterm-2		N/A
	General concepts of learning with introduction to	18.3,18.5,			
	PAC theory, hypothesis space learning, and	18.6,19.3			
	perceptions.	22.1,22.2			
	Agent interaction:				
	Basic concepts of agent communication and				
	coordination, including adversarial search and				
	game theory.				
12.	AI Application:	26		Tutorial -8	N/A
	Game playing, Speech recognition, Natural				
	language processing, Expert Systems, computer				
	vision, Robotics and Heuristic Classification.				
13.	AI Application:	26		Tutorial -9	N/A
	Game playing, Speech recognition, Natural				
	language processing, Expert Systems, computer				
	vision, Robotics and Heuristic Classification.				
14.	Mini Project	Prolog			N/A

6. Evaluation Scheme: The following list is the contribution of course components to the final grade for the course.			
Component	Weight (%)		
Assignment1/Mini Project	10%		
Quiz 1& 2	10%		
Mid Term 1	15%		
Mid Term 2	15%		
Final Exam	50%		
Total	100		

المملكة العربية السعودية وزارة التعليم العالي جامعة نجران كلية علوم الحاسب ونظم المعلومات

